Permutation and Combination

Module-5

Permutation Word Problems

Simple and Easy Method

Recap

Fundamental Principle of Counting states that

 "If an event can occur in \mathbf{m} different ways, following which another event can occur in \mathbf{n} different ways, then the total number of occurrence of the events in the given order is
mxn."

The notation ' n !' represents the product of first n natural numbers

A Permutation is an arrangement in a definite order of number of objects taken some or all at a time

For a natural number ' n '

$$
\begin{aligned}
\mathrm{n}! & =\mathrm{n}(\mathrm{n}-1)! \\
& =\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)! \\
& =\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)!
\end{aligned}
$$

$$
\begin{aligned}
& n \mathbf{P}_{\mathrm{n}}=\mathrm{n}! \\
& { }^{n} \mathbf{P}_{1}=\mathbf{n} \\
& { }^{n} \mathbf{P}_{\mathrm{o}}=\mathbf{1}
\end{aligned}
$$

Theorem 1

The number of permutation of \mathbf{n} different objects taken \mathbf{r} at a time, where $\mathbf{0}<\mathbf{r} \leq \mathrm{n}$ and the objects do not repeat is ${ }^{n} \mathrm{P}_{\mathrm{r}}$

Theorem 2
The number of Permutations of n different objects taken r at a time, when repetition is allowed is n^{r}

Theorem 3

The number of permutations of n objects ,where p objects are of the same kind and the
rest are all different $=\frac{n!}{p!}$

Theorem 4

The number of permutations of n objects, where p_{1} objects are of one kind, p_{2} are of second kind,.... p_{k} are of $k^{\text {th }}$ kind and the rest , if any are of different kind is $\frac{n!}{p_{1!p_{2}!\ldots p_{k}!}}$

QUESTION......

How many words can be formed from the letters of the word OMEGA if:
(i) O and A occupy end places.

$\mathrm{M}, \mathrm{E}, \mathrm{G} \longrightarrow$ can be arranged in 3 ! ways.
$\mathrm{O} \& \mathrm{~A} \longrightarrow$ can be arranged in 2 ! ways.
\therefore Total no. of arrangements $=3!\times 2!=12$
(ii) E being always in the middle. \square
$\mathrm{O}, \mathrm{M}, \mathrm{G}, \mathrm{A} \longrightarrow$ can be arranged in 4 ! ways.
\therefore Total no. of arrangements $=4!=24$

Question continued......

(iii) Vowels occupy odd places

Vowels - A, E, O can be arranged in 3 ! ways.
Consonants - M, G can be arranged in 2 ! ways.
\therefore Total no. of arrangements
$=3!\times 2!=12$
(iv) Vowels never occur together

Total no. of words $=5!=120$ When vowels are together,
no. of words $=3!\times 3!=36$
\therefore Total no. of words when the vowels are never together $=120-36=84$

In how many different ways can the letters of the word CORPORATION be arranged so that the vowels always come together?
(A) 810
(B) 1440
(C) 2880
(D) 50400

Find the number of words with or without meaning which can be made using all the letters of the word AGAIN .If these words are written as in a dictionary, what will be the $50^{\text {th }}$ word?
Solution There are 5 letters in the word AGAIN, in which A appears 2 times. Therefore, the required number of words $=\frac{5!}{2!}$ $=60$

TOTAL $=24+12+12=48$
WHAT'S $49^{\text {TH }}=\mathbf{N}---$
THEN $50^{\mathrm{TH}}=\mathrm{N}---$

Letters of the word 'MOTHER' are arranged in all possible ways and the words so obtained are arranged as in a dictionary. What is the rank of the word 'MOTHER' in this arrangement?

Initial Letters	Number of words
E___ _ _	$5!=120$
$\mathrm{H}_{\text {_ }}$-_-_	$5!=120$
M E__-_-	$4!=24$
M H _ _ _ _	$4!=24$
MOE _ _ _	$3!=6$
MOH_{\sim}-_-	$3!=6$
MOR__ _	$3!=6$
M OTE ___	$2!=2$
total	308 words

After this, the $309^{\text {th }}$ word is MOTHER.

In how many ways can 4 books on Mathematics and 3 books on English be placed on a shelf so that books of the same subject always remain together?

- Mathematics $\longrightarrow 4$ and English $\longrightarrow 3$

Required no. of arrangements $=\ldots!$ x __! x __! $=288$

POLL QUESTION.....

 ways can they be seated in a row so that all the four girls are not together?
(A) 10 ! -7 ! $\times 4$!
(B) ${ }^{10} P_{4}$
(C) ${ }^{7} \mathrm{P}_{4}$
(D) $6!\times 4$!

ASSIGNMENT

1 How many words can be formed out of the letters of the word TRIANGLE' ? How many of these will begin with T and end with E?

2
How many 6 -digit numbers can be formed from the digits $0,1,3,5$, 7 and 9 which are divisible by 10 and no digit is repeated ?
3 Find the number of different permutations of the letters of the word BANANA.
4 How many numbers greater than $\mathbf{1 0 0 0 0 0 0}$ can be formed by using the digits $1,2,0,2,4,2,4$?
5 Letters of the word 'MOTHER' are arranged in all possible ways and the words (with or without meaning)so obtained are arranged as in a dictionary. What is the position of the word 'MOTHER' in this arrangement?
ANSWERS; $(\mathbf{1}) 8!=40320$ and $\mathbf{6 !}=\mathbf{7 2 0}$
$\begin{array}{ll}\text { (2) } 120 & \text { (3) }) \frac{6!}{3!2!}=60\end{array}$

$$
\begin{array}{ll}
(4) & 360
\end{array}\left(509^{t h}\right.
$$

THANK YOU

Stay safe

Stay blessed

